When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Interface conditions for electromagnetic fields - Wikipedia

    en.wikipedia.org/wiki/Interface_conditions_for...

    This is done by assuming conditions at the boundaries which are physically correct and numerically solvable in finite time. In some cases, the boundary conditions resume to a simple interface condition. The most usual and simple example is a fully reflecting (electric wall) boundary - the outer medium is considered as a perfect conductor.

  3. Perfect conductor - Wikipedia

    en.wikipedia.org/wiki/Perfect_conductor

    In electrostatics, a perfect conductor is an idealized model for real conducting materials. The defining property of a perfect conductor is that static electric field and the charge density both vanish in its interior. If the conductor has excess charge, it accumulates as an infinitesimally thin layer of surface charge. An external electric ...

  4. Permittivity - Wikipedia

    en.wikipedia.org/wiki/Permittivity

    A perfect conductor has infinite conductivity, σ = ∞, while a perfect dielectric is a material that has no conductivity at all, σ = 0; this latter case, of real-valued permittivity (or complex-valued permittivity with zero imaginary component) is also associated with the name lossless media. [18]

  5. Electrical resistivity and conductivity - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivity_and...

    Typically, lightning discharges 30,000 amperes at up to 100 million volts, and emits light, radio waves, and X-rays. [17] Plasma temperatures in lightning might approach 30,000 kelvin (29,727 °C) (53,540 °F), and electron densities may exceed 10 24 m −3. Plasmas are very good conductors and electric potentials play an important role.

  6. Electrical conductor - Wikipedia

    en.wikipedia.org/wiki/Electrical_conductor

    where is the length of the conductor, measured in metres [m], A is the cross-section area of the conductor measured in square metres [m 2], σ is the electrical conductivity measured in siemens per meter (S·m −1), and ρ is the electrical resistivity (also called specific electrical resistance) of the material, measured in ohm-metres (Ω·m ...

  7. Photoconductive polymer - Wikipedia

    en.wikipedia.org/wiki/Photoconductive_polymer

    Photoconductivity is an optical and electrical phenomenon, which material's electrical conductivity increase by absorption of electromagnetic radiation (e.g. visible light, ultraviolet light, infrared light). Photoconductive polymers can serve as good insulators when the electricity, free electrons and holes are absent.

  8. Surface equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Surface_equivalence_principle

    In the case of a perfect electrical conductor, the electric currents that are impressed on the surface won't radiate due to Lorentz reciprocity. Thus, the original currents can be substituted with surface magnetic currents only. A similar formulation for a perfect magnetic conductor would use impressed electric currents. [1]

  9. Photoconductivity - Wikipedia

    en.wikipedia.org/wiki/Photoconductivity

    When light is absorbed by a material such as a semiconductor, the number of free electrons and holes increases, resulting in increased electrical conductivity. [2] To cause excitation, the light that strikes the semiconductor must have enough energy to raise electrons across the band gap , or to excite the impurities within the band gap.