Ad
related to: finding multiples of 7
Search results
Results From The WOW.Com Content Network
In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b , it can be said that b is a multiple of a if b = na for some integer n , which is called the multiplier .
And that is actually the same as subtracting 7×10 n (clearly a multiple of 7) from 10×10 n. Similarly, when you turn a 3 into a 2 in the following decimal position, you are turning 30×10 n into 2×10 n, which is the same as subtracting 30×10 n −28×10 n, and this is again subtracting a multiple of 7. The same reason applies for all the ...
For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.
An incremental formulation of the sieve [2] generates primes indefinitely (i.e., without an upper bound) by interleaving the generation of primes with the generation of their multiples (so that primes can be found in gaps between the multiples), where the multiples of each prime p are generated directly by counting up from the square of the ...
Then multiples of 147 are subtracted from 462 until the remainder is less than 147. Three multiples can be subtracted (q 1 = 3), leaving a remainder of 21: 462 = 3 × 147 + 21. Then multiples of 21 are subtracted from 147 until the remainder is less than 21. Seven multiples can be subtracted (q 2 = 7), leaving no remainder: 147 = 7 × 21 + 0.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web. AOL.
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563. Should you need additional assistance we have experts available around the clock at 800-730-2563.
The elements 2 and 1 + √ −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + √ −3, but they are not associated, so there is no greatest common divisor of a and b.