When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:

  3. Isohedral figure - Wikipedia

    en.wikipedia.org/wiki/Isohedral_figure

    A polyhedron (or polytope in general) is k-isohedral if it contains k faces within its symmetry fundamental domains. [5] Similarly, a k -isohedral tiling has k separate symmetry orbits (it may contain m different face shapes, for m = k , or only for some m < k ).

  4. Polyhedral group - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_group

    In geometry, the polyhedral group is any of the symmetry groups of the Platonic solids. Groups. There are three polyhedral groups:

  5. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    A convex polyhedron is a polyhedron that bounds a convex set. Every convex polyhedron can be constructed as the convex hull of its vertices, and for every finite set of points, not all on the same plane, the convex hull is a convex polyhedron. Cubes and pyramids are examples of convex polyhedra.

  6. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    The Dehn invariant of a polyhedron is normally found by combining the edge lengths and dihedral angles of the polyhedron, but in the case of an ideal polyhedron the edge lengths are infinite. This difficulty can be avoided by using a horosphere to truncate each vertex, leaving a finite length along each edge.

  7. Space-filling polyhedron - Wikipedia

    en.wikipedia.org/wiki/Space-filling_polyhedron

    The cube is the only Platonic solid that can fill space, although a tiling that combines tetrahedra and octahedra (the tetrahedral-octahedral honeycomb) is possible. Although the regular tetrahedron cannot fill space, other tetrahedra can, including the Goursat tetrahedra derived from the cube, and the Hill tetrahedra.

  8. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

  9. Polyhedral map projection - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_map_projection

    To a degree, the polyhedron and the projection used to transform each face of the polyhedron can be considered separately, and some projections can be applied to differently shaped faces. The gnomonic projection transforms the edges of spherical polyhedra to straight lines, preserving all polyhedra contained within a hemisphere, so it is a ...