When.com Web Search

  1. Ad

    related to: complex number real part calculator calculus examples

Search results

  1. Results From The WOW.Com Content Network
  2. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. It is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.

  3. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}

  4. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.

  5. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    In order to evaluate real integrals, the residue theorem is used in the following manner: the integrand is extended to the complex plane and its residues are computed (which is usually easy), and a part of the real axis is extended to a closed curve by attaching a half-circle in the upper or lower half-plane, forming a semicircle.

  6. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane. [1] [2] [3]Contour integration is closely related to the calculus of residues, [4] a method of complex analysis.

  7. Argument (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Argument_(complex_analysis)

    Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...

  8. Cauchy's integral formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_integral_formula

    Geometric calculus defines a derivative operator ∇ = ê i ∂ i under its geometric product — that is, for a k-vector field ψ(r), the derivative ∇ψ generally contains terms of grade k + 1 and k − 1. For example, a vector field (k = 1) generally has in its derivative a scalar part, the divergence (k = 0), and a bivector part, the curl ...

  9. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be ⁠ 1 / 2 ⁠. In other words, all known nontrivial zeros of the Riemann zeta are of the form z = ⁠ 1 / 2 ⁠ + yi where y is a real number.