Ad
related to: complex number real part calculator calculus download
Search results
Results From The WOW.Com Content Network
A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. It is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.
PARI/GP is a computer algebra system that facilitates number-theory computation. Besides support of factoring, algebraic number theory, and analysis of elliptic curves, it works with mathematical objects like matrices, polynomials, power series, algebraic numbers, and transcendental functions. [3]
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...
The Smith chart is a mathematical transformation of the two-dimensional Cartesian complex plane. Complex numbers with positive real parts map inside the circle. Those with negative real parts map outside the circle. If we are dealing only with impedances with non-negative resistive components, our interest is focused on the area inside the circle.
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.
The real numbers can be generalized and extended in several different directions: The complex numbers contain solutions to all polynomial equations and hence are an algebraically closed field unlike the real numbers. However, the complex numbers are not an ordered field. The affinely extended real number system adds two elements +∞ and −∞.
A complex function is a function from complex numbers to complex numbers. In other words, it is a function that has a (not necessarily proper) subset of the complex numbers as a domain and the complex numbers as a codomain. Complex functions are generally assumed to have a domain that contains a nonempty open subset of the complex plane.