When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bertrand's theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_theorem

    In classical mechanics, Bertrand's theorem states that among central-force potentials with bound orbits, there are only two types of central-force (radial) scalar potentials with the property that all bound orbits are also closed orbits.

  3. Proof of Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Proof_of_Bertrand's_postulate

    In mathematics, Bertrand's postulate (now a theorem) states that, for each , there is a prime such that < <.First conjectured in 1845 by Joseph Bertrand, [1] it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan.

  4. Bertrand's ballot theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_ballot_theorem

    In combinatorics, Bertrand's ballot problem is the question: "In an election where candidate A receives p votes and candidate B receives q votes with p > q, what is the probability that A will be strictly ahead of B throughout the count under the assumption that votes are counted in a randomly picked order?" The answer is

  5. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    In number theory, Bertrand's postulate is the theorem that for any integer >, there exists at least one prime number with n < p < 2 n − 2. {\displaystyle n<p<2n-2.} A less restrictive formulation is: for every n > 1 {\displaystyle n>1} , there is always at least one prime p {\displaystyle p} such that

  6. Daniel Larsen (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Daniel_Larsen_(mathematician)

    Daniel Larsen (born 2003) is an American mathematician known for proving [1] a 1994 conjecture of W. R. Alford, Andrew Granville and Carl Pomerance on the distribution of Carmichael numbers, commonly known as Bertrand's postulate for Carmichael numbers. [2]

  7. Kepler problem - Wikipedia

    en.wikipedia.org/wiki/Kepler_problem

    They are the only two problems that have closed orbits for every possible set of initial conditions, i.e., return to their starting point with the same velocity (Bertrand's theorem). [1]: 92 The Kepler problem also conserves the Laplace–Runge–Lenz vector, which has since been generalized to include other interactions.

  8. Bertrand theorem - Wikipedia

    en.wikipedia.org/?title=Bertrand_theorem&redirect=no

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Bertrand_theorem&oldid=111268896"This page was last edited on 27 February 2007, at 05:24 (UTC). (UTC).

  9. Bertrand's box paradox - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_box_paradox

    Bertrand's box paradox: the three equally probable outcomes after the first gold coin draw. The probability of drawing another gold coin from the same box is 0 in (a), and 1 in (b) and (c). Thus, the overall probability of drawing a gold coin in the second draw is ⁠ 0 / 3 ⁠ + ⁠ 1 / 3 ⁠ + ⁠ 1 / 3 ⁠ = ⁠ 2 / 3 ⁠.