When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).

  3. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Ptolemy's theorem expresses the product of the lengths of the two diagonals e and f of a cyclic quadrilateral as equal to the sum of the products of opposite sides: [9]: p.25 [2] e f = a c + b d , {\displaystyle \displaystyle ef=ac+bd,}

  4. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...

  5. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Proof of law of cosines using Ptolemy's theorem. Referring to the diagram, triangle ABC with sides AB = c, BC = a and AC = b is drawn inside its circumcircle as shown. Triangle ABD is constructed congruent to triangle ABC with AD = BC and BD = AC. Perpendiculars from D and C meet base AB at E and F respectively.

  6. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The golden ratio properties of a regular pentagon can be confirmed by applying Ptolemy's theorem to the quadrilateral formed by removing one of its vertices. If the quadrilateral's long edge and diagonals are ⁠ a {\displaystyle a} ⁠ , and short edges are ⁠ b {\displaystyle b} ⁠ , then Ptolemy's theorem gives ⁠ a 2 = b 2 + a b ...

  7. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Euler also generalized Ptolemy's theorem, which is an equality in a cyclic quadrilateral, into an inequality for a convex quadrilateral. It states that + where there is equality if and only if the quadrilateral is cyclic. [24]: p.128–129 This is often called Ptolemy's inequality.

  8. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin( α + β ) = sin α cos β + cos α sin ...

  9. Ptolemy's table of chords - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_table_of_chords

    He used Ptolemy's theorem on quadrilaterals inscribed in a circle to derive formulas for the chord of a half-arc, the chord of the sum of two arcs, and the chord of a difference of two arcs. The theorem states that for a quadrilateral inscribed in a circle , the product of the lengths of the diagonals equals the sum of the products of the two ...