Search results
Results From The WOW.Com Content Network
SSS has the property of information-theoretic security, meaning that even if an attacker steals some shares, it is impossible for the attacker to reconstruct the secret unless they have stolen a sufficient number of shares. Shamir's secret sharing is used in some applications to share the access keys to a master secret.
Symbolic Link (SYLK) is a Microsoft file format typically used to exchange data between applications, specifically spreadsheets. SYLK files conventionally have a .slk suffix. Composed of only displayable ANSI characters, it can be easily created and processed by other applications, such as databases .
In mathematics, Gauss congruence is a property held by certain sequences of integers, including the Lucas numbers and the divisor sum sequence. Sequences satisfying this property are also known as Dold sequences, Fermat sequences, Newton sequences, and realizable sequences. [ 1 ]
The lattice Con(A) of all congruence relations on an algebra A is algebraic. John M. Howie described how semigroup theory illustrates congruence relations in universal algebra: In a group a congruence is determined if we know a single congruence class, in particular if we know the normal subgroup which is the class containing the identity.
The congruence theorems side-angle-side (SAS) and side-side-side (SSS) also hold on a sphere; in addition, if two spherical triangles have an identical angle-angle-angle (AAA) sequence, they are congruent (unlike for plane triangles). [9] The plane-triangle congruence theorem angle-angle-side (AAS) does not hold for spherical triangles. [10]
Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.
In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example is the subgroup of invertible 2 × 2 integer matrices of determinant 1 in which the off-diagonal entries are even .
However, in the form that every congruum (the difference between consecutive elements in an arithmetic progression of three squares) is non-square, it was already known (without proof) to Fibonacci. [4] Every congruum is a congruent number, and every congruent number is a product of a congruum and the square of a rational number. [5]