When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    While not derived as a Riemann sum, taking the average of the left and right Riemann sums is the trapezoidal rule and gives a trapezoidal sum. It is one of the simplest of a very general way of approximating integrals using weighted averages. This is followed in complexity by Simpson's rule and Newton–Cotes formulas.

  3. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...

  4. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.

  5. Harmonic number - Wikipedia

    en.wikipedia.org/wiki/Harmonic_number

    The reason is that the sum is approximated by the integral, whose value is ln n. The values of the sequence H n − ln n decrease monotonically towards the limit lim n → ∞ ( H n − ln ⁡ n ) = γ , {\displaystyle \lim _{n\to \infty }\left(H_{n}-\ln n\right)=\gamma ,} where γ ≈ 0.5772156649 is the Euler–Mascheroni constant .

  6. Partition of an interval - Wikipedia

    en.wikipedia.org/wiki/Partition_of_an_interval

    A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.

  7. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    A Riemann sum of a function f with respect to such a tagged partition is defined as ∑ i = 1 n f ( t i ) Δ i ; {\displaystyle \sum _{i=1}^{n}f(t_{i})\,\Delta _{i};} thus each term of the sum is the area of a rectangle with height equal to the function value at the chosen point of the given sub-interval, and width the same as the width of sub ...

  8. Riemann solver - Wikipedia

    en.wikipedia.org/wiki/Riemann_solver

    Generally speaking, Riemann solvers are specific methods for computing the numerical flux across a discontinuity in the Riemann problem. [1] They form an important part of high-resolution schemes; typically the right and left states for the Riemann problem are calculated using some form of nonlinear reconstruction, such as a flux limiter or a WENO method, and then used as the input for the ...

  9. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    For this purpose it is possible to use the following fact: if we draw the circle with the sum of a and b as the diameter, then the height BH (from a point of their connection to crossing with a circle) equals their geometric mean. The similar geometrical construction solves a problem of a quadrature for a parallelogram and a triangle.