Search results
Results From The WOW.Com Content Network
A probabilistic neural network (PNN) [1] is a feedforward neural network, which is widely used in classification and pattern recognition problems.In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function.
The Kaufman Assessment Battery for Children (KABC) is a clinical instrument (psychological diagnostic test) for assessing cognitive development. Its construction incorporates several recent developments in both psychological theory and statistical methodology. The test was developed by Alan S. Kaufman and Nadeen L. Kaufman in
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
In psychology and cognitive neuroscience, pattern recognition is a cognitive process that matches information from a stimulus with information retrieved from memory. [1]Pattern recognition occurs when information from the environment is received and entered into short-term memory, causing automatic activation of a specific content of long-term memory.
Pattern recognition is the task of assigning a class to an observation based on patterns extracted from data. While similar, pattern recognition (PR) is not to be confused with pattern machines (PM) which may possess (PR) capabilities but their primary function is to distinguish and create emergent patterns.
In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Written ...
Minimum redundancy feature selection is an algorithm frequently used in a method to accurately identify characteristics of genes and phenotypes and narrow down their relevance and is usually described in its pairing with relevant feature selection as Minimum Redundancy Maximum Relevance (mRMR).
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]