When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    The deflection of beam elements is usually calculated on the basis of the Euler–Bernoulli beam equation while that of a plate or shell element is calculated using plate or shell theory. An example of the use of deflection in this context is in building construction. Architects and engineers select materials for various applications.

  3. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Macaulay's method (the double integration method) is a technique used in structural analysis to determine the deflection of Euler-Bernoulli beams.Use of Macaulay's technique is very convenient for cases of discontinuous and/or discrete loading.

  4. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  5. Slope deflection method - Wikipedia

    en.wikipedia.org/wiki/Slope_deflection_method

    The slope deflection method is a structural analysis method for beams and frames introduced in 1914 by George A. Maney. [1] The slope deflection method was widely used for more than a decade until the moment distribution method was developed. In the book, "The Theory and Practice of Modern Framed Structures", written by J.B Johnson, C.W. Bryan ...

  6. Moment-area theorem - Wikipedia

    en.wikipedia.org/wiki/Moment-Area_Theorem

    The moment-area theorem is an engineering tool to derive the slope, rotation and deflection of beams and frames. This theorem was developed by Mohr and later stated namely by Charles Ezra Greene in 1873.

  7. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    It is a function of the Young's modulus, the second moment of area of the beam cross-section about the axis of interest, length of the beam and beam boundary condition. Bending stiffness of a beam can analytically be derived from the equation of beam deflection when it is applied by a force.

  8. Sandwich theory - Wikipedia

    en.wikipedia.org/wiki/Sandwich_theory

    Let the total deflection of the beam due to these loads be . The adjacent figure shows that, for small displacements, the total deflection of the mid-surface of the beam can be expressed as the sum of two deflections, a pure bending deflection w b {\displaystyle w_{b}} and a pure shear deflection w s {\displaystyle w_{s}} , i.e.,

  9. Direct integration of a beam - Wikipedia

    en.wikipedia.org/wiki/Direct_integration_of_a_beam

    Direct integration is a structural analysis method for measuring internal shear, internal moment, rotation, and deflection of a beam. Positive directions for forces acting on an element. For a beam with an applied weight w ( x ) {\displaystyle w(x)} , taking downward to be positive, the internal shear force is given by taking the negative ...