Search results
Results From The WOW.Com Content Network
The proton NMR spectrum of cyclohexane is a singlet at room temperature, with no separation into separate signals for axial and equatorial hydrogens. In one chair form, the dihedral angle of the chain of carbon atoms (1,2,3,4) is positive whereas that of the chain (1,6,5,4) is negative, but in the other chair form, the situation is the opposite.
Substituents on a cyclohexane ring prefer to reside in the equatorial position to the axial. The difference in Gibbs free energy (ΔG) between the higher energy conformation (axial substitution) and the lower energy conformation (equatorial substitution) is the A-value for that particular substituent.
As noted above, by transitioning from one chair conformer to another, all axial positions become equatorial and all equatorial positions become axial. Substituent groups in equatorial positions roughly follow along the equator of the cyclohexane ring and are perpendicular to the axis, while substituents in axial positions roughly follow the ...
If cyclohexane is mono-substituted with a large substituent, then the substituent will most likely be found attached in an equatorial position, as this is the slightly more stable conformation. Cyclohexane has the lowest angle and torsional strain of all the cycloalkanes; as a result cyclohexane has been deemed a 0 in total ring strain.
The α- and β-anomers of D-glucopyranose.. In organic chemistry, the anomeric effect or Edward-Lemieux effect (after J. T. Edward and Raymond Lemieux) is a stereoelectronic effect that describes the tendency of heteroatomic substituents adjacent to a heteroatom within a cyclohexane ring to prefer the axial orientation instead of the less-hindered equatorial orientation that would be expected ...
Chemical structure of cyclohexane, with indication of axial (red) and equatorial (blue) bonds by colors. Date: 30 July 2006: Source: Selfmade with ChemDraw. Author: Calvero. Permission (Reusing this file) PD. Other versions: Image:Cyclohexane structure.png.
In the case of cyclic systems, the steric effect and contribution to the free energy can be approximated by A values, which measure the energy difference when a substituent on cyclohexane in the axial as compared to the equatorial position. In large (>14 atom) rings, there are many accessible low-energy conformations which correspond to the ...
When ring flip happens completely from chair-to-chair, hydrogens that were previously axial (blue H) turn equatorial & equatorial ones (red H) turn axial. Pink and orange arrows show how one can imagine how carbons are being "pushed" as one conformation turns into another. Source for the conformation names & claim of lowest/highest energy: