When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    The bag-of-words model (BoW) is a model of text which uses a representation of text that is based on an unordered collection (a "bag") of words. It is used in natural language processing and information retrieval (IR). It disregards word order (and thus most of syntax or grammar) but captures multiplicity.

  3. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    In computer vision, the bag-of-words model (BoW model) sometimes called bag-of-visual-words model [1] [2] can be applied to image classification or retrieval, by treating image features as words. In document classification , a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary.

  4. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Word2vec can use either of two model architectures to produce these distributed representations of words: continuous bag of words (CBOW) or continuously sliding skip-gram. In both architectures, word2vec considers both individual words and a sliding context window as it iterates over the corpus.

  5. tf–idf - Wikipedia

    en.wikipedia.org/wiki/Tf–idf

    Like the bag-of-words model, it models a document as a multiset of words, without word order. It is a refinement over the simple bag-of-words model, by allowing the weight of words to depend on the rest of the corpus. It was often used as a weighting factor in searches of information retrieval, text mining, and user modeling.

  6. Document-term matrix - Wikipedia

    en.wikipedia.org/wiki/Document-term_matrix

    Certain function words such as and, the, at, a, etc., were placed in a "forbidden word list" table, and the frequency of these words was recorded in a separate listing... A special computer program, called the Descriptor Word Index Program, was written to provide this information and to prepare a document-term matrix in a form suitable for in ...

  7. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  8. n-gram - Wikipedia

    en.wikipedia.org/wiki/N-gram

    When the items are words, n-grams may also be called shingles. [ 2 ] In the context of Natural language processing (NLP), the use of n -grams allows bag-of-words models to capture information such as word order, which would not be possible in the traditional bag of words setting.

  9. Feature hashing - Wikipedia

    en.wikipedia.org/wiki/Feature_hashing

    Therefore, the bags of words for a set of documents is regarded as a term-document matrix where each row is a single document, and each column is a single feature/word; the entry i, j in such a matrix captures the frequency (or weight) of the j 'th term of the vocabulary in document i. (An alternative convention swaps the rows and columns of ...