Search results
Results From The WOW.Com Content Network
Consecutive primes in arithmetic progression refers to at least three consecutive primes which are consecutive terms in an arithmetic progression. Note that unlike an AP-k, all the other numbers between the terms of the progression must be composite. For example, the AP-3 {3, 7, 11} does not qualify, because 5 is also a prime.
A positive integer that can be written as the sum of two or more consecutive positive integers. A138591: ErdÅ‘s–Nicolas numbers: 24, 2016, 8190, 42336, 45864, 392448, 714240, 1571328, ... A number n such that there exists another number m and , =. A194472: Solution to Stepping Stone Puzzle
Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence.
Beginning of the Fibonacci sequence on a building in Gothenburg. In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers.. An integer sequence may be specified explicitly by giving a formula for its nth term, or implicitly by giving a relationship between its terms.
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
In the graph the sequence appears to be converging to a limit as the distance between consecutive terms in the sequence gets smaller as n increases. In the real numbers every Cauchy sequence converges to some limit. A Cauchy sequence is a sequence whose terms become arbitrarily close together as n gets very large.
In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is also a positive integer. In other words, there are infinitely many primes that are congruent to a modulo d.
In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite. [1] [2] The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.