Search results
Results From The WOW.Com Content Network
In computer programming, the async/await pattern is a syntactic feature of many programming languages that allows an asynchronous, non-blocking function to be structured in a way similar to an ordinary synchronous function.
The running time of LPT is dominated by the sorting, which takes O(n log n) time, where n is the number of inputs. LPT is monotone in the sense that, if one of the input numbers increases, the objective function (the largest sum or the smallest sum of a subset in the output) weakly increases. [2] This is in contrast to Multifit algorithm.
Interval scheduling is a class of problems in computer science, particularly in the area of algorithm design. The problems consider a set of tasks. Each task is represented by an interval describing the time in which it needs to be processed by some machine (or, equivalently, scheduled on some resource).
Initial behavior: While some algorithms start with immediate guesses, others take a more calculated approach and have a start up period before making any guesses. [9] Growth direction: How the quality of the program's "output" or result, varies as a function of the amount of time ("run time") [9] Growth rate: Amount of increase with each step.
When a program makes many I/O operations (such as a program mainly or largely dependent on user input), this means that the processor can spend almost all of its time idle waiting for I/O operations to complete. Alternatively, it is possible to start the communication and then perform processing that does not require that the I/O be completed.
Busy-waiting itself can be made much less wasteful by using a delay function (e.g., sleep()) found in most operating systems. This puts a thread to sleep for a specified time, during which the thread will waste no CPU time. If the loop is checking something simple then it will spend most of its time asleep and will waste very little CPU time.
The task with the highest priority for which all dependent tasks have finished is scheduled on the worker which will result in the earliest finish time of that task. This finish time depends on the communication time to send all necessary inputs to the worker, the computation time of the task on the worker, and the time when that processor ...
When a program wants to time its own operation, it can use a function like the POSIX clock() function, which returns the CPU time used by the program. POSIX allows this clock to start at an arbitrary value, so to measure elapsed time, a program calls clock(), does some work, then calls clock() again. [1] The difference is the time needed to do ...