Search results
Results From The WOW.Com Content Network
For example, acetic acid is a weak acid which has a = 1.75 x 10 −5. Its conjugate base is the acetate ion with K b = 10 −14 /K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14), which certainly does not correspond to a strong base. The conjugate of a weak acid is often a weak base and vice versa.
[c] [2] For example, a hypothetical weak acid having K a = 10 −5, the value of log K a is the exponent (−5), giving pK a = 5. For acetic acid , K a = 1.8 x 10 −5 , so p K a is 4.7. A higher K a corresponds to a stronger acid (an acid that is more dissociated at equilibrium).
Simply because a substance does not readily dissolve does not make it a weak electrolyte. Acetic acid (CH 3 COOH) and ammonium (NH + 4) are good examples. Acetic acid is extremely soluble in water, but most of the compound dissolves into molecules, rendering it a weak electrolyte. Weak bases and weak acids are generally weak electrolytes.
The Henderson–Hasselbalch equation relates the pH of a solution containing a mixture of the two components to the acid dissociation constant, K a of the acid, and the concentrations of the species in solution. [6] Simulated titration of an acidified solution of a weak acid (pK a = 4.7) with alkali
A weak base persists in chemical equilibrium in much the same way as a weak acid does, with a base dissociation constant (K b) indicating the strength of the base. For example, when ammonia is put in water, the following equilibrium is set up:
A weak acid HA is one that does not dissociate fully when it is dissolved in water. Instead an equilibrium mixture is formed: HA + H 2 O ⇌ H 3 O + + A −. Acetic acid is an example of a weak acid. The pH of the neutralized solution resulting from HA + OH − → H 2 O + A −
Although hydrofluoric acid is regarded as a weak acid, it is very corrosive, even attacking glass when hydrated. [20] Dilute solutions are weakly acidic with an acid ionization constant K a = 6.6 × 10 −4 (or pK a = 3.18), [10] in contrast to corresponding solutions of the other hydrogen halides, which are strong acids (pK a < 0).
Acetic acid is a weak acid, so it only ionizes slightly. According to Le Chatelier's principle, the addition of acetate ions from sodium acetate will suppress the ionization of acetic acid and shift its equilibrium to the left. Thus the percent dissociation of the acetic acid will decrease, and the pH of the solution will increase.