Search results
Results From The WOW.Com Content Network
The action spectra of chlorophyll molecules are slightly modified in vivo depending on specific pigment-protein interactions. An action spectrum is a graph of the rate of biological effectiveness plotted against wavelength of light. [1] It is related to absorption spectrum in many systems.
This mismatch between absorption spectra and photochemical action plots has by now been observed in a wide array of photoreactive systems. [41] [42] [43] A prominent example is the photoinduced [2+2] cycloaddition of the stilbene derivative, styrypyrene, which exhibited an 80 nm discrepancy between the action plot and absorption spectrum. [33]
In biology, phototropism is the growth of an organism in response to a light stimulus. Phototropism is most often observed in plants , but can also occur in other organisms such as fungi . The cells on the plant that are farthest from the light contain a hormone called auxin that reacts when phototropism occurs.
All the photoreceptors listed above allow plants to sense light with wavelengths range from 280 nm (UV-B) to 750 nm (far-red light). Plants use light of different wavelengths as environmental cues to both alter their position and to trigger important developmental transitions. [ 7 ]
One study found that phototropins on the plasma membrane play a role in phototropism, leaf flattening, stomatal opening, and chloroplast movements, while phototropins on the chloroplasts only partially affected stomatal opening and chloroplast movement, [16] suggesting that the location of the protein in the cell may also play a role in its ...
Phytochrome is the only known photoreceptor that absorbs light in the red/far red spectrum of light (600-750 nm) specifically and only for photosensory purposes. [1] Phytochromes are proteins with a light absorbing pigment attached called a chromophore. The chromophore is a linear tetrapyrrole called phytochromobilin. [7]
Photosynthetically active radiation (PAR) spans the visible light portion of the electromagnetic spectrum from 400 to 700 nanometers. Photosynthetically active radiation (PAR) designates the spectral range (wave band) of solar radiation from 400 to 700 nanometers that photosynthetic organisms are able to use in the process of photosynthesis.
Photobiology is the scientific study of the beneficial and harmful interactions of light (technically, non-ionizing radiation) in living organisms. [1] The field includes the study of photophysics, photochemistry, photosynthesis, photomorphogenesis, visual processing, circadian rhythms, photomovement, bioluminescence, and ultraviolet radiation effects.