Search results
Results From The WOW.Com Content Network
Each node has a rule; the format of this rule is IF cond1 AND cond2 AND ... AND condN THEN conclusion. Cond1 is a condition (boolean evaluation), for example A=1, isGreater(A,5) and average(A,">",average(B)). Each node has exactly two successor nodes, these successor nodes are connected to predecessor node by "ELSE" or "EXCEPT".
In general, any measurable function can be pushed forward. The push-forward then becomes a linear operator, known as the transfer operator or Frobenius–Perron operator.In finite spaces this operator typically satisfies the requirements of the Frobenius–Perron theorem, and the maximal eigenvalue of the operator corresponds to the invariant measure.
(Example where () converges) You have a fair coin and are repeatedly tossing it. Each time, before it is tossed, you can choose to stop tossing it and get paid (in dollars, say) the average number of heads observed. You wish to maximise the amount you get paid by choosing a stopping rule.
The image to the right shows an example of a scoring rule, the logarithmic scoring rule, as a function of the probability reported for the event that actually occurred. One way to use this rule would be as a cost based on the probability that a forecaster or algorithm assigns, then checking to see which event actually occurs.
In operations research, Johnson's rule is a method of scheduling jobs in two work centers. Its primary objective is to find an optimal sequence of jobs to reduce makespan (the total amount of time it takes to complete all jobs). It also reduces the amount of idle time between the two work centers. The method minimizes the makespan in the case ...
The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.
An example of this strategy is the furniture industry, where production strategy has to follow a pull-based strategy, since it is impossible to make production decisions based on long-term forecasts. However, the distribution strategy needs to take advantage of economies of scale in order to reduce transportation cost, using a push-based strategy.
Mason's gain formula (MGF) is a method for finding the transfer function of a linear signal-flow graph (SFG). The formula was derived by Samuel Jefferson Mason, [1] for whom it is named. MGF is an alternate method to finding the transfer function algebraically by labeling each signal, writing down the equation for how that signal depends on ...