Ads
related to: how to graph a linear equation with 2 variables
Search results
Results From The WOW.Com Content Network
The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0 , the line is the graph of the function of x that has been defined in the preceding section.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
A plot is a graphical technique for representing a data set, usually as a graph showing the relationship between two or more variables. The plot can be drawn by hand or by a computer. In the past, sometimes mechanical or electronic plotters were used. Graphs are a visual representation of the relationship between variables, which are very ...
In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation. It is usually applied to functions sampled on a 2D rectilinear grid, though it can be generalized to functions defined on the vertices of (a mesh of) arbitrary convex quadrilaterals.
A pictorial representation of a simple linear program with two variables and six inequalities. The set of feasible solutions is depicted in yellow and forms a polygon, a 2-dimensional polytope. The optimum of the linear cost function is where the red line intersects the polygon.
A linear function is a polynomial function in which the variable x has degree at most one: [2] f ( x ) = a x + b {\displaystyle f(x)=ax+b} . Such a function is called linear because its graph , the set of all points ( x , f ( x ) ) {\displaystyle (x,f(x))} in the Cartesian plane , is a line .
A two-dimensional system of linear differential equations can be written in the form: [1] = + = + which can be organized into a matrix equation: [] = [] [] =.where A is the 2 × 2 coefficient matrix above, and v = (x, y) is a coordinate vector of two independent variables.
Linearity of a homogenous differential equation means that if two functions f and g are solutions of the equation, then any linear combination af + bg is, too. In instrumentation, linearity means that a given change in an input variable gives the same change in the output of the measurement apparatus: this is highly desirable in scientific work.