When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Though the body's speed is constant, its velocity is not constant: velocity, a vector quantity, depends on both the body's speed and its direction of travel. This changing velocity indicates the presence of an acceleration; this centripetal acceleration is of constant magnitude and directed at all times toward the axis of rotation.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Terminal velocity depends on atmospheric drag, the coefficient of drag for the object, the (instantaneous) velocity of the object, and the area presented to the airflow. Apart from the last formula, these formulas also assume that g negligibly varies with height during the fall (that is, they assume constant acceleration).

  4. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Calculation of the speed difference for a uniform acceleration. Uniform or constant acceleration is a type of motion in which the velocity of an object changes by an equal amount in every equal time period. A frequently cited example of uniform acceleration is that of an object in free fall in a uniform gravitational field

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Stated formally, in general, an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = ⁠ dr / dt ⁠), and its acceleration (the second derivative of r, a = ⁠ d 2 r / dt 2 ⁠), and time t.

  6. Proper acceleration - Wikipedia

    en.wikipedia.org/wiki/Proper_acceleration

    Even then if an object maintains a constant proper-acceleration from rest over an extended period in flat spacetime, observers in the rest frame will see the object's coordinate acceleration decrease as its coordinate velocity approaches lightspeed. The rate at which the object's proper-velocity goes up, nevertheless, remains constant.

  7. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Consequently, the acceleration is the second derivative of position, [7] often written . Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to ...

  8. Torricelli's equation - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_equation

    In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where

  9. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    g is the gravitational acceleration [m/s 2] Requiring the force balance F d = F e and solving for the velocity v gives the terminal velocity v s. Note that since the excess force increases as R 3 and Stokes' drag increases as R, the terminal velocity increases as R 2 and thus varies greatly with particle