Ad
related to: hamiltonian manifold assembly procedure manualusermanualsonline.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
However, the Hamiltonian still exists. In the case where the cometric is degenerate at every point q of the configuration space manifold Q, so that the rank of the cometric is less than the dimension of the manifold Q, one has a sub-Riemannian manifold. The Hamiltonian in this case is known as a sub-Riemannian Hamiltonian. Every such ...
In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton , a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics .
In this case, the Hamiltonian flow is a Reeb vector field on that level set. It is a fact that any contact manifold (M,α) can be embedded into a canonical symplectic manifold, called the symplectization of M, such that M is a contact type level set (of a canonically defined Hamiltonian) and the Reeb vector field is a Hamiltonian flow. That is ...
Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...
An -action on a symplectic manifold (,) is called Hamiltonian if it is symplectic and if there exists a momentum map. A momentum map is often also required to be G {\displaystyle G} -equivariant , where G {\displaystyle G} acts on g ∗ {\displaystyle {\mathfrak {g}}^{*}} via the coadjoint action , and sometimes this requirement is included in ...
Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold. [1] The term "symplectic", introduced by Hermann Weyl, [2] is a calque of "complex"; previously, the "symplectic group" had been called the "line complex ...
A Hamiltonian diffeomorphism of a symplectic manifold (M, ω) is a diffeomorphism Φ of M which is the integral of a smooth path of Hamiltonian vector fields Y t. Vladimir Arnold conjectured that the number of fixed points of a generic Hamiltonian diffeomorphism of a compact symplectic manifold ( M , ω ) should be bounded from below by some ...
To further illuminate the c j, consider how one gets the equations of motion from the naive Hamiltonian in the standard procedure. One expands the variation of the Hamiltonian out in two ways and sets them equal (using a somewhat abbreviated notation with suppressed indices and sums):