When.com Web Search

  1. Ads

    related to: steel beam span size chart

Search results

  1. Results From The WOW.Com Content Network
  2. Span (engineering) - Wikipedia

    en.wikipedia.org/wiki/Span_(engineering)

    In engineering, span is the distance between two adjacent structural supports (e.g., two piers) of a structural member (e.g., a beam). Span is measured in the horizontal direction either between the faces of the supports (clear span) or between the centers of the bearing surfaces (effective span): [1] A span can be closed by a solid beam or by ...

  3. I-beam - Wikipedia

    en.wikipedia.org/wiki/I-beam

    In Mexico, steel I-beams are called IR and commonly specified using the depth and weight of the beam in metric terms. For example, a "IR250x33" beam is approximately 250 mm (9.8 in) in depth (height of the I-beam from the outer face of one flange to the outer face of the other flange) and weighs approximately 33 kg/m (22 lb/ft).

  4. Structural steel - Wikipedia

    en.wikipedia.org/wiki/Structural_steel

    Structural steel shapes, sizes, chemical composition, mechanical properties such as strengths, storage practices, etc., are regulated by standards in most industrialized countries. Most structural steel shapes, such as Ɪ-beams , have high second moments of area , which means they are very stiff in respect to their cross-sectional area and ...

  5. Double tee - Wikipedia

    en.wikipedia.org/wiki/Double_tee

    Double tee structure is an alternative for short to medium spans between 40 and 90 feet (12 and 27 m). There are many standards such as double-tee beam of Texas Department of Transportation and the Northeast Extreme Tee (NEXT) Beam of the Northeast. [8] A benefit of using double tees for bridge replacements is to shorten the construction time.

  6. Plate girder bridge - Wikipedia

    en.wikipedia.org/wiki/Plate_girder_bridge

    Generally, the depth of the girder is no less than 1 ⁄ 15 the span, and for a given load bearing capacity, a depth of around 1 ⁄ 12 the span minimizes the weight of the girder. Stresses on the flanges near the centre of the span are greater than near the end of the span, so the top and bottom flange plates are frequently reinforced in the ...

  7. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    The deflection at any point, , along the span of a center loaded simply supported beam can be calculated using: [1] = for The special case of elastic deflection at the midpoint C of a beam, loaded at its center, supported by two simple supports is then given by: [ 1 ] δ C = F L 3 48 E I {\displaystyle \delta _{C}={\frac {FL^{3}}{48EI}}} where