Search results
Results From The WOW.Com Content Network
A similar theorem states that K 4 and K 2,3 are the forbidden minors for the set of outerplanar graphs. Although the Robertson–Seymour theorem extends these results to arbitrary minor-closed graph families, it is not a complete substitute for these results, because it does not provide an explicit description of the obstruction set for any family.
Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor.
This states that families of graphs closed under the graph minor operation may be characterized by a finite set of forbidden minors. As part of this work, Robertson and Seymour also proved the graph structure theorem describing the graphs in these families. [6] Additional major results in Robertson's research include the following:
A minor of a graph G is any graph H that is isomorphic to a graph that can be obtained from a subgraph of G by contracting some edges. If G does not have a graph H as a minor, then we say that G is H-free. Let H be a fixed graph. Intuitively, if G is a huge H-free graph, then there ought to be a "good reason" for this.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Graph_minors_theorem&oldid=1102375387"
In the language of the later papers in Robertson and Seymour's graph minor series, a path-decomposition is a tree decomposition (X,T) in which the underlying tree T of the decomposition is a path graph.
Neil Robertson, Paul Seymour, and Robin Thomas used the Petersen family as part of a similar characterization of linkless embeddings of graphs, embeddings of a given graph into Euclidean space in such a way that every cycle in the graph is the boundary of a disk that is not crossed by any other part of the graph. [1]
Pages in category "Graph minor theory" The following 33 pages are in this category, out of 33 total. ... Robertson–Seymour theorem; S. Shallow minor; Snark (graph ...