When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Molar concentration - Wikipedia

    en.wikipedia.org/wiki/Molar_concentration

    Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular, of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter ...

  3. Molar conductivity - Wikipedia

    en.wikipedia.org/wiki/Molar_conductivity

    The molar conductivity of an electrolyte solution is defined as its conductivity divided by its molar concentration. [1][2] where: κ is the measured conductivity (formerly known as specific conductance), [3] c is the molar concentration of the electrolyte. The SI unit of molar conductivity is siemens metres squared per mole (S m 2 mol −1). [2]

  4. Molality - Wikipedia

    en.wikipedia.org/wiki/Molality

    The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]

  5. Henry's law - Wikipedia

    en.wikipedia.org/wiki/Henry's_law

    The molality of a solution does not change with , since it refers to the mass of the solvent. In contrast, the concentration does change with , since the density of a solution and thus its volume are temperature-dependent. Defining the aqueous-phase composition via molality has the advantage that any temperature dependence of the Henry's law ...

  6. Thermodynamic activity - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_activity

    The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.

  7. Colligative properties - Wikipedia

    en.wikipedia.org/wiki/Colligative_properties

    In chemistry, colligative properties are those properties of solutions that depend on the ratio of the number of solute particles to the number of solvent particles in a solution, and not on the nature of the chemical species present. [1] The number ratio can be related to the various units for concentration of a solution such as molarity ...

  8. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    An important example is the case where φ is at a steady state, i.e. the concentration does not change by time, so that the left part of the above equation is identically zero. In one dimension with constant D, the solution for the concentration will be a linear change of concentrations along x. In two or more dimensions we obtain

  9. Ionic strength - Wikipedia

    en.wikipedia.org/wiki/Ionic_strength

    The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.