When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Legendre function - Wikipedia

    en.wikipedia.org/wiki/Legendre_function

    The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...

  3. Associated Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Associated_Legendre...

    In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation. or equivalently. where the indices ℓ and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively. This equation has nonzero solutions that are nonsingular on [−1, 1] only ...

  4. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    The Legendre polynomials were first introduced in 1782 by Adrien-Marie Legendre [3] as the coefficients in the expansion of the Newtonian potential where r and r′ are the lengths of the vectors x and x′ respectively and γ is the angle between those two vectors. The series converges when r > r′.

  5. Spherical harmonics - Wikipedia

    en.wikipedia.org/wiki/Spherical_harmonics

    Furthermore, a change of variables t = cos θ transforms this equation into the Legendre equation, whose solution is a multiple of the associated Legendre polynomial P m ℓ (cos θ). Finally, the equation for R has solutions of the form R(r) = A r ℓ + B r −ℓ − 1; requiring the solution to be regular throughout R 3 forces B = 0. [3]

  6. Legendre's equation - Wikipedia

    en.wikipedia.org/wiki/Legendre's_equation

    In mathematics, Legendre's equation is the Diophantine equation + + = The equation is named for Adrien-Marie Legendre who proved in 1785 that it is solvable in integers x, y, z, not all zero, if and only if −bc, −ca and −ab are quadratic residues modulo a, b and c, respectively, where a, b, c are nonzero, square-free, pairwise relatively prime integers, not all positive or all negative.

  7. Gegenbauer polynomials - Wikipedia

    en.wikipedia.org/wiki/Gegenbauer_polynomials

    In mathematics, Gegenbauer polynomials or ultraspherical polynomials C(α) n (x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2) α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer.

  8. Legendre wavelet - Wikipedia

    en.wikipedia.org/wiki/Legendre_wavelet

    Associated Legendre polynomials are the colatitudinal part of the spherical harmonics which are common to all separations of Laplace's equation in spherical polar coordinates. [2] The radial part of the solution varies from one potential to another, but the harmonics are always the same and are a consequence of spherical symmetry.

  9. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    In numerical analysis, Gauss–Legendre quadrature is a form of Gaussian quadrature for approximating the definite integral of a function. For integrating over the interval [−1, 1], the rule takes the form: where. n is the number of sample points used, wi are quadrature weights, and. xi are the roots of the n th Legendre polynomial.