Search results
Results From The WOW.Com Content Network
Linear trend estimation is a statistical technique used to analyze data patterns. Data patterns, or trends, occur when the information gathered tends to increase or decrease over time or is influenced by changes in an external factor.
If the trend can be assumed to be linear, trend analysis can be undertaken within a formal regression analysis, as described in Trend estimation. If the trends have other shapes than linear, trend testing can be done by non-parametric methods, e.g. Mann-Kendall test, which is a version of Kendall rank correlation coefficient.
The trend-cycle component can just be referred to as the "trend" component, even though it may contain cyclical behavior. [3] For example, a seasonal decomposition of time series by Loess (STL) [ 4 ] plot decomposes a time series into seasonal, trend and irregular components using loess and plots the components separately, whereby the cyclical ...
For α = 0.05 (one-sided) the critical z value is 1.645, so again the result would be declared significant at this level. A similar test for trend within the context of repeated measures (within-participants) designs and based on Spearman's rank correlation coefficient was developed by Page .
Linear regression can be used to estimate the values of β 1 and β 2 from the measured data. This model is non-linear in the time variable, but it is linear in the parameters β 1 and β 2; if we take regressors x i = (x i1, x i2) = (t i, t i 2), the model takes on the standard form
If the means are not known at the time of calculation, it may be more efficient to use the expanded version of the ^ ^ equations. These expanded equations may be derived from the more general polynomial regression equations [ 7 ] [ 8 ] by defining the regression polynomial to be of order 1, as follows.
Smoothed analysis — measuring the expected performance of algorithms under slight random perturbations of worst-case inputs; Symbolic-numeric computation — combination of symbolic and numeric methods; Cultural and historical aspects: History of numerical solution of differential equations using computers
Students working in the Statistics Machine Room of the London School of Economics in 1964. Computational statistics, or statistical computing, is the study which is the intersection of statistics and computer science, and refers to the statistical methods that are enabled by using computational methods.