Search results
Results From The WOW.Com Content Network
Vertical and horizontal subspaces for the Möbius strip. The Möbius strip is a line bundle over the circle, and the circle can be pictured as the middle ring of the strip. At each point e {\displaystyle e} on the strip, the projection map projects it towards the middle ring, and the fiber is perpendicular to the middle ring.
In mathematics, physics, and engineering, the first axis is usually defined or depicted as horizontal and oriented to the right, and the second axis is vertical and oriented upwards. (However, in some computer graphics contexts, the ordinate axis may be oriented downwards.)
The word horizontal is derived from the Latin horizon, which derives from the Greek ὁρῐ́ζων, meaning 'separating' or 'marking a boundary'. [2] The word vertical is derived from the late Latin verticalis, which is from the same root as vertex, meaning 'highest point' or more literally the 'turning point' such as in a whirlpool.
In mathematics, the abscissa (/ æ b ˈ s ɪ s. ə /; plural abscissae or abscissas) and the ordinate are respectively the first and second coordinate of a point in a Cartesian coordinate system: [1] [2] abscissa-axis (horizontal) coordinate ordinate-axis (vertical) coordinate
Slope: = = In mathematics, the slope or gradient of a line is a number that describes the direction of the line on a plane. [1] Often denoted by the letter m, slope is calculated as the ratio of the vertical change to the horizontal change ("rise over run") between two distinct points on the line, giving the same number for any choice of points.
Horizontal and vertical commonly refers a concept about orientation in mathematics, geography, physics and other sciences, with the vertical typically being defined by the direction of gravity, and with the horizontal being perpendicular to the vertical. Horizontal and vertical may also refer to:
The horizontal and vertical compositions are the compositions between natural transformations described previously. A functor category C I {\displaystyle C^{I}} is then simply a hom-category in this category (smallness issues aside).
Using this form, vertical lines correspond to equations with b = 0. One can further suppose either c = 1 or c = 0, by dividing everything by c if it is not zero. There are many variant ways to write the equation of a line which can all be converted from one to another by algebraic manipulation. The above form is sometimes called the standard form.