When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem), which proves the existence of a particular kind of object without providing an example. For avoiding confusion with the stronger concept that follows, such a constructive proof is sometimes called an effective proof .

  3. Constructivism (philosophy of mathematics) - Wikipedia

    en.wikipedia.org/wiki/Constructivism_(philosophy...

    In classical real analysis, one way to define a real number is as an equivalence class of Cauchy sequences of rational numbers.. In constructive mathematics, one way to construct a real number is as a function ƒ that takes a positive integer and outputs a rational ƒ(n), together with a function g that takes a positive integer n and outputs a positive integer g(n) such that

  4. Intuitionistic logic - Wikipedia

    en.wikipedia.org/wiki/Intuitionistic_logic

    For example, any theorem of classical propositional logic of the form has a proof consisting of an intuitionistic proof of followed by one application of double-negation elimination. Intuitionistic logic can thus be seen as a means of extending classical logic with constructive semantics.

  5. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    In contrast, a constructive proof establishes that a particular object exists by providing a method of finding it. The following famous example of a nonconstructive proof shows that there exist two irrational numbers a and b such that a b {\displaystyle a^{b}} is a rational number .

  6. Law of excluded middle - Wikipedia

    en.wikipedia.org/wiki/Law_of_excluded_middle

    The above proof is an example of a non-constructive proof disallowed by intuitionists: The proof is non-constructive because it doesn't give specific numbers a {\\displaystyle a} and b {\\displaystyle b} that satisfy the theorem but only two separate possibilities, one of which must work.

  7. Existence theorem - Wikipedia

    en.wikipedia.org/wiki/Existence_theorem

    From the other direction, there has been considerable clarification of what constructive mathematics is—without the emergence of a 'master theory'. For example, according to Errett Bishop's definitions, the continuity of a function such as sin(x) should be proved as a constructive bound on the modulus of continuity, meaning that the existential content of the assertion of continuity is a ...

  8. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    The example mapping f happens to correspond to the example enumeration s in the picture above. A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set S, the power set of S—that is, the set of all subsets of S (here written as P(S))—cannot be in bijection with S itself. This proof proceeds as ...

  9. Modus ponens - Wikipedia

    en.wikipedia.org/wiki/Modus_ponens

    The cut-elimination theorem for a calculus says that every proof involving Cut can be transformed (generally, by a constructive method) into a proof without Cut, and hence that Cut is admissible. The Curry–Howard correspondence between proofs and programs relates modus ponens to function application : if f is a function of type P → Q and x ...