Ads
related to: hamilton's principle of optics and camera model 2
Search results
Results From The WOW.Com Content Network
The general results presented above for Hamilton's principle can be applied to optics using the Lagrangian defined in Fermat's principle.The Euler-Lagrange equations with parameter σ =x 3 and N=2 applied to Fermat's principle result in ˙ = with k = 1, 2 and where L is the optical Lagrangian and ˙ = /.
Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.
Hamilton's optico-mechanical analogy is a conceptual parallel between trajectories in classical mechanics and wavefronts in optics, introduced by William Rowan Hamilton around 1831. [1] It may be viewed as linking Huygens' principle of optics with Maupertuis' principle of mechanics.
Haselgrove developed her equations at Cambridge University in the 1950s, as a student under Kenneth Budden, by re-applying the earlier work of William Rowan Hamilton and Hamilton's principle in geometrical optics [4] to radio propagation in a plasma. [5] Indeed, the application of Haselgrove's equations is often termed Hamiltonian ray tracing.
Sir William Rowan Hamilton (4 August 1805 – 2 September 1865) [1] [2] was an Irish mathematician, physicist and astronomer. He was Andrews Professor of Astronomy at Trinity College Dublin . Hamilton was the third director of Dunsink Observatory from 1827 to 1865.
The design of photographic lenses for use in still or cine cameras is intended to produce a lens that yields the most acceptable rendition of the subject being photographed within a range of constraints that include cost, weight and materials.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.