When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Aldehyde - Wikipedia

    en.wikipedia.org/wiki/Aldehyde

    Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many ...

  3. Ketone - Wikipedia

    en.wikipedia.org/wiki/Ketone

    Ketones are trigonal planar around the ketonic carbon, with C–C–O and C–C–C bond angles of approximately 120°. Ketones differ from aldehydes in that the carbonyl group (C=O) is bonded to two carbons within a carbon skeleton. In aldehydes, the carbonyl is bonded to one carbon and one hydrogen and are located at the ends of carbon chains.

  4. Carbonyl reduction - Wikipedia

    en.wikipedia.org/wiki/Carbonyl_reduction

    Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds. Carboxylic acids, esters, and acid halides can be reduced to either aldehydes or a step further to primary alcohols , depending on the strength of the reducing agent.

  5. Reductive amination - Wikipedia

    en.wikipedia.org/wiki/Reductive_amination

    The carbonyl group is most commonly a ketone or an aldehyde. It is a common method to make amines and is widely used in green chemistry since it can be done catalytically in one-pot under mild conditions. In biochemistry, dehydrogenase enzymes use reductive amination to produce the amino acid glutamate. Additionally, there is ongoing research ...

  6. Alcohol oxidation - Wikipedia

    en.wikipedia.org/wiki/Alcohol_oxidation

    Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.

  7. Aldol reaction - Wikipedia

    en.wikipedia.org/wiki/Aldol_reaction

    The use of aldehyde in the name comes from its history: aldehydes are more reactive than ketones, so that the reaction was discovered first with them. [2] [3] [4] The aldol reaction is paradigmatic in organic chemistry and one of the most common means of forming carbon–carbon bonds in organic chemistry.

  8. Hydrazone - Wikipedia

    en.wikipedia.org/wiki/Hydrazone

    Pigment Yellow 97, a popular yellow colorant, is a hydrazone. [6]Hydrazones are the basis for various analyses of ketones and aldehydes. For example, dinitrophenylhydrazine coated onto a silica sorbent is the basis of an adsorption cartridge.

  9. Oxime - Wikipedia

    en.wikipedia.org/wiki/Oxime

    The condensation of aldehydes with hydroxylamine gives aldoximes, and ketoximes are produced from ketones and hydroxylamine. In general, oximes exist as colorless crystals or as thick liquids and are poorly soluble in water. Therefore, oxime formation can be used for the identification of ketone or aldehyde functional groups.