Search results
Results From The WOW.Com Content Network
The surface of the projectile also must be considered: a smooth projectile will face less air resistance than a rough-surfaced one, and irregularities on the surface of a projectile may change its trajectory if they create more drag on one side of the projectile than on the other. However, certain irregularities such as dimples on a golf ball ...
If the projectile's position (x,y) and launch angle (θ) are known, the maximum height can be found by solving for h in the following equation: = () (). Angle of elevation (φ) at the maximum height is given by:
To find the angle giving the maximum height for a given speed calculate the derivative of the maximum height = / with respect to , that is = / which is zero when = / =. So the maximum height H m a x = v 2 2 g {\displaystyle H_{\mathrm {max} }={v^{2} \over 2g}} is obtained when the projectile is fired straight up.
Impact parameter b and scattering angle θ In physics, the impact parameter b is defined as the perpendicular distance between the path of a projectile and the center of a potential field U(r) created by an object that the projectile is approaching (see diagram).
A projectile leaving a muzzle at a given elevation angle follows a ballistic trajectory whose characteristics are dependent upon various factors such as muzzle velocity, gravity, and aerodynamic drag. This ballistic trajectory is referred to as the bullet path.
The yaw rate or yaw velocity of a car, aircraft, projectile or other rigid body is the angular velocity of this rotation, or rate of change of the heading angle when the aircraft is horizontal. It is commonly measured in degrees per second or radians per second.
English: Trajectories of projectiles launched at different elevation angles and a speed of 10 m/s. A vacuum and a uniform downward gravity field of 10 m/s² is assumed. t = time from launch, T = time of flight, R = range and H = highest point of trajectory (indicated by arrows).
This graph shows different pressure curves for powders with different burn rates. The leftmost graph is the same as the large graph above. The middle graph shows a powder with a 25% faster burn rate, and the rightmost graph shows a powder with a 20% slower burn rate. Energy is the ability to do work on an object. Work is force applied over a ...