When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    Vertex, edge and face of a cube. The Euler characteristic χ was classically defined for the surfaces of polyhedra, according to the formula = + where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given polyhedron. [2]

  3. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded by edges, including the outer, infinitely large region), then

  4. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Euler's formula relating the number of edges, vertices, and faces of a convex polyhedron was studied and generalized by Cauchy [21] and L'Huilier, [22] and represents the beginning of the branch of mathematics known as topology.

  5. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case. [1] Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2]

  7. Euler operator (digital geometry) - Wikipedia

    en.wikipedia.org/wiki/Euler_operator_(digital...

    Let the number of vertices be V, edges be E, faces be F, components H, shells S, and let the genus be G (S and G correspond to the b 0 and b 2 Betti numbers respectively). Then, to denote a meaningful geometric object, the mesh must satisfy the generalized Euler–Poincaré formula. V – E + F = H + 2 * (S – G) The Euler operators preserve ...

  8. Regular 4-polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_4-polytope

    The Euler characteristic for all 4-polytopes is zero, we have the 4-dimensional analogue of Euler's polyhedral formula: + = where N k denotes the number of k-faces in the polytope (a vertex is a 0-face, an edge is a 1-face, etc.).

  9. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    The non-orientable genus, demigenus, or Euler genus of a connected, non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − k , where k is the non-orientable genus.