Search results
Results From The WOW.Com Content Network
In the merge sort algorithm, this subroutine is typically used to merge two sub-arrays A[lo..mid], A[mid+1..hi] of a single array A. This can be done by copying the sub-arrays into a temporary array, then applying the merge algorithm above. [1] The allocation of a temporary array can be avoided, but at the expense of speed and programming ease.
In Java associative arrays are implemented as "maps", which are part of the Java collections framework. Since J2SE 5.0 and the introduction of generics into Java, collections can have a type specified; for example, an associative array that maps strings to strings might be specified as follows:
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
General array slicing can be implemented (whether or not built into the language) by referencing every array through a dope vector or descriptor – a record that contains the address of the first array element, and then the range of each index and the corresponding coefficient in the indexing formula.
The final algorithm takes the six most significant bits of the size of the array, adds one if any of the remaining bits are set, and uses that result as the minrun. This algorithm works for all arrays, including those smaller than 64; for arrays of size 63 or less, this sets minrun equal to the array size and Timsort reduces to an insertion ...
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.
A sorting algorithm that checks if the array is sorted until a miracle occurs. It continually checks the array until it is sorted, never changing the order of the array. [10] Because the order is never altered, the algorithm has a hypothetical time complexity of O(∞), but it can still sort through events such as miracles or single-event upsets.