Search results
Results From The WOW.Com Content Network
The properties of a hydrogel are highly dependent on the type and quantity of its crosslinks, making photopolymerization a popular choice for fine-tuning hydrogels. This technique has seen considerable use in cell and tissue engineering applications due to the ability to inject or mold a precursor solution loaded with cells into a wound site ...
Self-healing hydrogels are a specialized type of polymer hydrogel.A hydrogel is a macromolecular polymer gel constructed of a network of crosslinked polymer chains. Hydrogels are synthesized from hydrophilic monomers by either chain or step growth, along with a functional crosslinker to promote network formation.
Physical hydrogels contain reversible matrices of hydrogen and non-covalent bonds, while chemical hydrogels are composed of irreversible matrices that are molecularly held together by covalent bonds. Used as another parameter in characterizing gels, electric charge (also referred to as ionic character) describes the ability of the ...
Nanocomposite hydrogels that are reinforced with carbon-based nanomaterials are mechanically tough and electrically conductive, which make them suitable for use in biomedicine, tissue engineering, drug delivery, biosensing, etc. The electrical conductivity property of these hydrogels allows them to mimic the characteristics of nerve, muscle ...
A nanogel is a polymer-based, crosslinked hydrogel particle on the sub-micron scale. [1] [2] [3] These complex networks of polymers present a unique opportunity in the field of drug delivery at the intersection of nanoparticles and hydrogel synthesis.
An important aspect of thin film drug technology is its taste and color. The sweet taste in formulation is more important in case of pediatric population. Natural sweeteners as well as artificial sweeteners are used to improve the flavor of the mouth dissolving formulations for the flavors changes from individual to individual.
For rubber and biological materials, more sophisticated models are necessary. Such materials may exhibit a non-linear stress–strain behaviour at modest strains, or are elastic up to huge strains. These complex non-linear stress–strain behaviours need to be accommodated by specifically tailored strain-energy density functions.
This destabilization increases the reaction driving force, and the desire of the cycloalkyne to relieve its ring strain. Scheme of the Strain-promoted Azide-Alkyne Cycloaddition. This reaction proceeds as a concerted [3+2] cycloaddition to the triple bond in a cyclooctyne in the same mechanism as the Huisgen 1,3-dipolar cycloaddition ...