When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Weisfeiler Leman graph isomorphism test - Wikipedia

    en.wikipedia.org/wiki/Weisfeiler_Leman_graph...

    In graph theory, the Weisfeiler Leman graph isomorphism test is a heuristic test for the existence of an isomorphism between two graphs G and H. [1] It is a generalization of the color refinement algorithm and has been first described by Weisfeiler and Leman in 1968. [2]

  3. Graph isomorphism problem - Wikipedia

    en.wikipedia.org/wiki/Graph_isomorphism_problem

    It is shown that finding an isomorphism for n-vertex graphs is equivalent to finding an n-clique in an M-graph of size n 2. This fact is interesting because the problem of finding a clique of order (1 − ε)n in a M-graph of size n 2 is NP-complete for arbitrarily small positive ε. [43] The problem of homeomorphism of 2-complexes. [44]

  4. Graph isomorphism - Wikipedia

    en.wikipedia.org/wiki/Graph_isomorphism

    The Whitney graph isomorphism theorem, [6] shown by Hassler Whitney, states that two connected graphs are isomorphic if and only if their line graphs are isomorphic, with a single exception: K 3, the complete graph on three vertices, and the complete bipartite graph K 1,3, which are not isomorphic but both have K 3 as their line graph.

  5. Colour refinement algorithm - Wikipedia

    en.wikipedia.org/wiki/Colour_refinement_algorithm

    To test if and are isomorphic we could try the following. Run colour refinement on both graphs. If the stable colourings produced are different we know that the two graphs are not isomorphic. However, it could be that the same stable colouring is produced despite the two graphs not being isomorphic; see below.

  6. Subgraph isomorphism problem - Wikipedia

    en.wikipedia.org/wiki/Subgraph_isomorphism_problem

    Subgraph isomorphism is a generalization of the graph isomorphism problem, which asks whether G is isomorphic to H: the answer to the graph isomorphism problem is true if and only if G and H both have the same numbers of vertices and edges and the subgraph isomorphism problem for G and H is true. However the complexity-theoretic status of graph ...

  7. Graph canonization - Wikipedia

    en.wikipedia.org/wiki/Graph_canonization

    Thus, from a solution to the graph canonization problem, one could also solve the problem of graph isomorphism: to test whether two graphs G and H are isomorphic, compute their canonical forms Canon(G) and Canon(H), and test whether these two canonical forms are identical. The canonical form of a graph is an example of a complete graph ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    A graph isomorphism is a one-to-one incidence preserving correspondence of the vertices and edges of one graph to the vertices and edges of another graph. Two graphs related in this way are said to be isomorphic. isoperimetric See expansion. isthmus Synonym for bridge, in the sense of an edge whose removal disconnects the graph.