Search results
Results From The WOW.Com Content Network
The dot-and-cross diagram of the LDQ structure of the ground state of acetylene is shown on the left and that of the first excited state of acetylene is shown on the right. The nuclei are as indicated and the electrons are denoted by either dots or crosses, depending on their relative spins.
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Dot_and_cross_diagram&oldid=50266000"
The sodium chloride (NaCl) polymorph is most common. A cubic close-packed arrangement of chloride anions with rubidium cations filling the octahedral holes describes this polymorph. [4] Both ions are six-coordinate in this arrangement. The lattice energy of this polymorph is only 3.2 kJ/mol less than the following structure's. [5]
If pure sodium chloride is used, a metallic sodium emulsion is formed in the molten NaCl which is impossible to separate. Therefore, one option is to have a NaCl (42%) and CaCl 2 (58%) mixture. The anode reaction is: 2Cl − → Cl 2 (g) + 2e −. The cathode reaction is: 2Na + + 2e − → 2Na (l) for an overall reaction of 2Na + + 2Cl − → ...
[4] [5] [6] The CALPHAD approach is based on the fact that a phase diagram is a manifestation of the equilibrium thermodynamic properties of the system, which are the sum of the properties of the individual phases. [7] It is thus possible to calculate a phase diagram by first assessing the thermodynamic properties of all the phases in a system.
In 1835, the French chemist Auguste Laurent recognised chloroform as CCl 2 • HCl (then written as C 8 Cl 8 • H 4 Cl 4) [a] in his paper on analysing some organohalides. Laurent also predicted a compound seemingly consisting of 2 parts dichlorocarbene which he named Chlorétherose (possibly Tetrachloroethylene, which was not known to exist at the time.) [8]
Note: ρ is density, n is refractive index at 589 nm, [clarification needed] and η is viscosity, all at 20 °C; T eq is the equilibrium temperature between two phases: ice/liquid solution for T eq < 0–0.1 °C and NaCl/liquid solution for T eq above 0.1 °C.