Search results
Results From The WOW.Com Content Network
Plot of the ReLU (blue) and GELU (green) functions near x = 0. In the context of artificial neural networks, the rectifier or ReLU (rectified linear unit) activation function [1] [2] is an activation function defined as the non-negative part of its argument, i.e., the ramp function:
The convex conjugate (specifically, the Legendre transform) of the softplus function is the negative binary entropy (with base e).This is because (following the definition of the Legendre transform: the derivatives are inverse functions) the derivative of softplus is the logistic function, whose inverse function is the logit, which is the derivative of negative binary entropy.
PyTorch defines a module called nn (torch.nn) to describe neural networks and to support training. This module offers a comprehensive collection of building blocks for neural networks, including various layers and activation functions, enabling the construction of complex models.
This property is desirable (ReLU is not continuously differentiable and has some issues with gradient-based optimization, but it is still possible) for enabling gradient-based optimization methods. The binary step activation function is not differentiable at 0, and it differentiates to 0 for all other values, so gradient-based methods can make ...
Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. [3] It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created by the Idiap Research Institute at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. [4] [5] [6]
The swish family was designed to smoothly interpolate between a linear function and the ReLU function. When considering positive values, Swish is a particular case of doubly parameterized sigmoid shrinkage function defined in [2]: Eq 3 . Variants of the swish function include Mish. [3]
TensorFlow.nn is a module for executing primitive neural network operations on models. [40] Some of these operations include variations of convolutions (1/2/3D, Atrous, depthwise), activation functions ( Softmax , RELU , GELU, Sigmoid , etc.) and their variations, and other operations ( max-pooling , bias-add, etc.).
In the field of mathematical modeling, a radial basis function network is an artificial neural network that uses radial basis functions as activation functions.The output of the network is a linear combination of radial basis functions of the inputs and neuron parameters.