Search results
Results From The WOW.Com Content Network
For an observer standing on the roof of the Burj Khalifa, 828 metres (2,717 ft) from ground, and about 834 metres (2,736 ft) above sea level, the horizon is at a distance of 103 kilometres (64 mi). For an observer atop Mount Everest (8,848 metres (29,029 ft) in altitude), the horizon is at a distance of 336 kilometres (209 mi).
Altitude (alt.), sometimes referred to as elevation (el.) or apparent height, is the angle between the object and the observer's local horizon. For visible objects, it is an angle between 0° and 90°. [b] Azimuth (az.) is the angle of the object around the horizon, usually measured from true north and increasing eastward.
The radar horizon with an antenna height of 75 feet (23 m) over the ocean is 10-mile (16 km). However, since the pressure and water vapor content of the atmosphere varies with height, the path used by the radar beam is refracted by the change in density. With a standard atmosphere, electromagnetic waves are generally bent or refracted downward.
Assuming a perfect sphere with no terrain irregularity, the distance to the horizon from a high altitude transmitter (i.e., line of sight) can readily be calculated. Let R be the radius of the Earth and h be the altitude of a telecommunication station. The line of sight distance d of this station is given by the Pythagorean theorem;
Graphs of distances to the true horizon on Earth for a given height h. s is along the surface of Earth, d is the straight line distance, and ~d is the approximate straight line distance assuming h << the radius of Earth, 6371 km. In the SVG image, hover over a graph to highlight it.
Horizon distance graphs: Image title: Graphs of distances to the true horizon on Earth for a given height above sea level, h by CMG Lee. s is along the surface of the Earth, d is the straight line distance, and ~d is the approximate straight line distance assuming h << the radius of the Earth, 6371 km. In the SVG image, hover over a graph to ...
Sighting the height of a landmark can give a measure of distance off and, held horizontally, a sextant can measure angles between objects for a position on a chart. [1] A sextant can also be used to measure the lunar distance between the moon and another celestial object (such as a star or planet) in order to determine Greenwich Mean Time and ...
An example of slant range is the distance to an aircraft flying at high altitude with respect to that of the radar antenna. The slant range (1) is the hypotenuse of the triangle represented by the altitude of the aircraft and the distance between the radar antenna and the aircraft's ground track (point (3) on the earth directly below the aircraft).