Search results
Results From The WOW.Com Content Network
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.
The Archimedean property appears in Book V of Euclid's Elements as Definition 4: Magnitudes are said to have a ratio to one another which can, when multiplied, exceed one another. Because Archimedes credited it to Eudoxus of Cnidus it is also known as the "Theorem of Eudoxus" or the Eudoxus axiom .
Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions from these. Although many of Euclid's results had been stated by earlier mathematicians, [7] Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. [8]
Parallel lines are the subject of Euclid's parallel postulate. [2] Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry. In some other geometries, such as hyperbolic geometry , lines can have analogous properties that are referred to as parallelism.
Euclid's axiomatic approach and constructive methods were widely influential. Many of Euclid's propositions were constructive, demonstrating the existence of some figure by detailing the steps he used to construct the object using a compass and straightedge. His constructive approach appears even in his geometry's postulates, as the first and ...
Euclid introduced certain axioms, or postulates, expressing primary or self-evident properties of points, lines, and planes. [39] He proceeded to rigorously deduce other properties by mathematical reasoning. The characteristic feature of Euclid's approach to geometry was its rigor, and it has come to be known as axiomatic or synthetic geometry ...
An example of a theorem of Euclidean geometry which cannot be so formulated is the Archimedean property: to any two positive-length line segments S 1 and S 2 there exists a natural number n such that nS 1 is longer than S 2. (This is a consequence of the fact that there are real-closed fields that contain infinitesimals. [5])