When.com Web Search

  1. Ad

    related to: radius of a circle theorem calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter.

  3. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    An inversion in their tangent point with respect to a circle of appropriate radius transforms the two touching given circles into two parallel lines, and the third given circle into another circle. Thus, the solutions may be found by sliding a circle of constant radius between two parallel lines until it contacts the transformed third circle.

  4. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Descartes' theorem is most easily stated in terms of the circles' curvatures. [25] The signed curvature (or bend) of a circle is defined as = /, where is its radius. The larger a circle, the smaller is the magnitude of its curvature, and vice versa.

  5. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    If is held constant, and the radius is allowed to vary, then we have = As the central angle approaches π, the area of the segment is converging to the area of a semicircle, π R 2 2 {\displaystyle {\tfrac {\pi R^{2}}{2}}} , so a good approximation is a delta offset from the latter area:

  6. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that

  7. Circular arc - Wikipedia

    en.wikipedia.org/wiki/Circular_arc

    Using the intersecting chords theorem (also known as power of a point or secant tangent theorem) it is possible to calculate the radius r of a circle given the height H and the width W of an arc: Consider the chord with the same endpoints as the arc. Its perpendicular bisector is another chord, which is a diameter of the circle.

  8. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...

  9. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Following Archimedes' argument in The Measurement of a Circle (c. 260 BCE), compare the area enclosed by a circle to a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius. If the area of the circle is not equal to that of the triangle, then it must be either greater or less.