Search results
Results From The WOW.Com Content Network
% The fixed point iteration function is assumed to be input as an % inline function. % This function will calculate and return the fixed point, p, % that makes the expression f(x) = p true to within the desired % tolerance, tol. format compact % This shortens the output. format long % This prints more decimal places. for i = 1: 1000 % get ready ...
α is a root of a polynomial p if and only if α −1 is a root of p ∗. [4] If p(x) ≠ x then p is irreducible if and only if p ∗ is irreducible. [5] p is primitive if and only if p ∗ is primitive. [4] Other properties of reciprocal polynomials may be obtained, for instance:
In numerical analysis, Broyden's method is a quasi-Newton method for finding roots in k variables. It was originally described by C. G. Broyden in 1965. [1]Newton's method for solving f(x) = 0 uses the Jacobian matrix, J, at every iteration.
This consists in using the last computed approximate values of the root for approximating the function by a polynomial of low degree, which takes the same values at these approximate roots. Then the root of the polynomial is computed and used as a new approximate value of the root of the function, and the process is iterated.
In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF(p m).This means that a polynomial F(X) of degree m with coefficients in GF(p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF(p m) such that {,,,,, …} is the entire field GF(p m).
For example, the function f(x) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically. However, if initialized at 0.5, the first few iterates of Newton's method are approximately 26214, 24904, 23658, 22476, decreasing slowly, with only the 200th ...
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
Wilkinson's polynomial arose in the study of algorithms for finding the roots of a polynomial = =. It is a natural question in numerical analysis to ask whether the problem of finding the roots of p from the coefficients c i is well-conditioned.