Ads
related to: euler bernoulli beam theory vibration plate
Search results
Results From The WOW.Com Content Network
Euler–Bernoulli beam. The original Euler–Bernoulli theory is valid only for infinitesimal strains and small rotations. The theory can be extended in a straightforward manner to problems involving moderately large rotations provided that the strain remains small by using the von Kármán strains. [8]
The Kirchhoff–Love theory is an extension of Euler–Bernoulli beam theory to thin plates. The theory was developed in 1888 by Love [2] using assumptions proposed by Kirchhoff. It is assumed that a mid-surface plane can be used to represent the three-dimensional plate in two-dimensional form.
The starting point is the relation from Euler-Bernoulli beam theory = Where is the deflection and is the bending moment. This equation [7] is simpler than the fourth-order beam equation and can be integrated twice to find if the value of as a function of is known.
The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love [1] using assumptions proposed by Kirchhoff. The theory assumes that a ...
Vibration mode of a clamped square plate. The vibration of plates is a special case of the more general problem of mechanical vibrations.The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two.
Primary shortcomings of the above methods were that: They have been developed mostly for Euler–Bernoulli beam theory; [citation needed]; They were developed in a few cases for Timoshenko beam theory or plate theories with expressions provided only for particular boundary conditions and beam or plate shapes [citation needed];
In 1921 Stephen Timoshenko improved the theory further by incorporating the effect of shear on the dynamic response of bending beams. This allowed the theory to be used for problems involving high frequencies of vibration where the dynamic Euler–Bernoulli theory is inadequate.
1750: Euler–Bernoulli beam equation; 1700–1782: Daniel Bernoulli introduced the principle of virtual work; 1707–1783: Leonhard Euler developed the theory of buckling of columns; Leonhard Euler developed the theory of buckling of columns. 1826: Claude-Louis Navier published a treatise on the elastic behaviors of structures