Ad
related to: negative fractional exponents
Search results
Results From The WOW.Com Content Network
If n is a negative integer, is defined only if x has a multiplicative inverse. [35] In this case, the inverse of x is denoted x −1, and x n is defined as (). Exponentiation with integer exponents obeys the following laws, for x and y in the algebraic structure, and m and n integers:
If K is a field (such as the complex numbers), a Puiseux series with coefficients in K is an expression of the form = = + / where is a positive integer and is an integer. In other words, Puiseux series differ from Laurent series in that they allow for fractional exponents of the indeterminate, as long as these fractional exponents have bounded denominator (here n).
Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two , e.g. 1 / 8 = 1 / 2 3 .
Negative powers are not permitted in an ordinary power series; for instance, + + + + is not considered a power series (although it is a Laurent series). Similarly, fractional powers such as x 1 2 {\textstyle x^{\frac {1}{2}}} are not permitted; fractional powers arise in Puiseux series .
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
By comparison, powers of two with negative exponents are fractions: for positive integer n, 2 −n is one half multiplied by itself n times. Thus the first few negative powers of 2 are 1 / 2 , 1 / 4 , 1 / 8 , 1 / 16 , etc.
The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in
The positive and negative normalized numbers closest to zero (represented with the binary value 1 in the exponent field and 0 in the fraction field) are ±1 × 2 −126 ≈ ±1.17549 × 10 −38 The finite positive and finite negative numbers furthest from zero (represented by the value with 254 in the exponent field and all 1s in the fraction ...