When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example). It is reached when the sum of the drag force ( F d ) and the buoyancy is equal to the downward force of gravity ( F G ) acting on the object.

  3. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    The maximum velocity occurs at the pipe centerline (r = 0), u max = ⁠ GR 2 / 4μ ⁠. The average velocity can be obtained by integrating over the pipe cross section , u a v g = 1 π R 2 ∫ 0 R 2 π r u d r = 1 2 u m a x . {\displaystyle {u}_{\mathrm {avg} }={\frac {1}{\pi R^{2}}}\int _{0}^{R}2\pi ru\mathrm {d} r={\tfrac {1}{2}}{u}_{\mathrm ...

  4. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Velocity is the speed in combination ... The kinetic energy of a moving object is dependent on its velocity and is given by the equation [10] = where E k is the ...

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Equation [3] involves the average velocity ⁠ v + v 0 / 2 ⁠. Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.

  7. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  8. Souders–Brown equation - Wikipedia

    en.wikipedia.org/wiki/Souders–Brown_equation

    In chemical engineering, the Souders–Brown equation (named after Mott Souders and George Granger Brown [1] [2]) has been a tool for obtaining the maximum allowable vapor velocity in vapor–liquid separation vessels (variously called flash drums, knockout drums, knockout pots, compressor suction drums and compressor inlet drums).

  9. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    The terminal velocity depends on many factors including mass, drag coefficient, and relative surface area and will only be achieved if the fall is from sufficient altitude. A typical skydiver in a spread-eagle position will reach terminal velocity after about 12 seconds, during which time they will have fallen around 450 m (1,500 ft). [4]