Search results
Results From The WOW.Com Content Network
Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.
For example, deciding on whether an image is showing a banana, peach, orange, or an apple is a multiclass classification problem, with four possible classes (banana, peach, orange, apple), while deciding on whether an image contains an apple or not is a binary classification problem (with the two possible classes being: apple, no apple).
Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]
In the case of discrete inputs (indicator or frequency features for discrete events), naive Bayes classifiers form a generative-discriminative pair with multinomial logistic regression classifiers: each naive Bayes classifier can be considered a way of fitting a probability model that optimizes the joint likelihood (,), while logistic ...
Classification (both binary and multi-class) Regression; Active learning (partially labeled data) for both regression and classification; Multiple learning algorithms (model-types / representations) OLS regression; Matrix factorization (sparse matrix SVD) Single layer neural net (with user specified hidden layer node count) Searn (Search and Learn)
As such, it is an alternative to the multinomial logit model as one method of multiclass classification. It is not to be confused with the multivariate probit model , which is used to model correlated binary outcomes for more than one independent variable.
It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression. The softmax function is often used as the last activation function of a neural network to normalize the output of a network to a probability distribution over predicted output classes.
Provides classification and regression datasets in a standardized format that are accessible through a Python API. Metatext NLP: https://metatext.io/datasets web repository maintained by community, containing nearly 1000 benchmark datasets, and counting. Provides many tasks from classification to QA, and various languages from English ...