When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation , named after Niels Henrik Abel who introduced it in 1826.

  3. Monomial - Wikipedia

    en.wikipedia.org/wiki/Monomial

    In mathematics, a monomial is, roughly speaking, a polynomial which has only one term.Two definitions of a monomial may be encountered: A monomial, also called a power product or primitive monomial, [1] is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. [2]

  4. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).

  5. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    The product is one type of algebra for random variables: Related to the product distribution are the ratio distribution, sum distribution (see List of convolutions of probability distributions) and difference distribution. More generally, one may talk of combinations of sums, differences, products and ratios.

  6. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    the sum of two random variables is a random variable; the product of two random variables is a random variable; addition and multiplication of random variables are both commutative; and; there is a notion of conjugation of random variables, satisfying (XY) * = Y * X * and X ** = X for all random variables X,Y and coinciding with complex ...

  7. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    where x is a variable we are interested in solving for, we can use cross-multiplication to determine that x = b c d . {\displaystyle x={\frac {bc}{d}}.} For example, suppose we want to know how far a car will travel in 7 hours, if we know that its speed is constant and that it already travelled 90 miles in the last 3 hours.

  8. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    One can show that the generalized binomial coefficient is well-defined, in the sense that no matter what set we choose to represent the cardinal number, () will remain the same. For finite cardinals, this definition coincides with the standard definition of the binomial coefficient.

  9. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1] Using the Jacobian determinant and the corresponding change of variable that it gives is the basis of coordinate systems such as polar, cylindrical, and spherical coordinate systems.