When.com Web Search

  1. Ads

    related to: kuta software parallel lines and transversals

Search results

  1. Results From The WOW.Com Content Network
  2. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    Euclid's Proposition 27 states that if a transversal intersects two lines so that alternate interior angles are congruent, then the lines are parallel. Euclid proves this by contradiction: If the lines are not parallel then they must intersect and a triangle is formed. Then one of the alternate angles is an exterior angle equal to the other ...

  3. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Since these are equivalent properties, any one of them could be taken as the definition of parallel lines in Euclidean space, but the first and third properties involve measurement, and so, are "more complicated" than the second. Thus, the second property is the one usually chosen as the defining property of parallel lines in Euclidean geometry ...

  4. Transversal (instrument making) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(instrument...

    Transversal. Transversals are a geometric construction on a scientific instrument to allow a graduation to be read to a finer degree of accuracy. Their use creates what is sometimes called a diagonal scale, an engineering measuring instrument which is composed of a set of parallel straight lines which are obliquely crossed by another set of straight lines.

  5. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.

  6. Transversality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Transversality_(mathematics)

    An intersection point between two arcs is transverse if and only if it is not a tangency, i.e., their tangent lines inside the tangent plane to the surface are distinct. In a three-dimensional space, two curves can be transverse only when they have empty intersection, since their tangent spaces could generate at most a two-dimensional space.

  7. Geometric terms of location - Wikipedia

    en.wikipedia.org/wiki/Geometric_terms_of_location

    Tangential – intersecting a curve at a point and parallel to the curve at that point. Collinear – in the same line; Parallel – in the same direction. Transverse – intersecting at any angle, i.e. not parallel. Orthogonal (or perpendicular) – at a right angle (at the point of intersection).

  8. Point at infinity - Wikipedia

    en.wikipedia.org/wiki/Point_at_infinity

    The existence of parallel lines leads to establishing a point at infinity which represents the intersection of these parallels. This axiomatic symmetry grew out of a study of graphical perspective where a parallel projection arises as a central projection where the center C is a point at infinity, or figurative point . [ 5 ]

  9. Projective space - Wikipedia

    en.wikipedia.org/wiki/Projective_space

    Dimension 0 (no lines): The space is a single point. Dimension 1 (exactly one line): All points lie on the unique line. Dimension 2: There are at least 2 lines, and any two lines meet. A projective space for n = 2 is equivalent to a projective plane. These are much harder to classify, as not all of them are isomorphic with a PG(d, K).

  1. Ad

    related to: kuta software parallel lines and transversals