When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    A widely used type of composition is the nonlinear weighted sum, where () = (()), where (commonly referred to as the activation function [3]) is some predefined function, such as the hyperbolic tangent, sigmoid function, softmax function, or rectifier function. The important characteristic of the activation function is that it provides a smooth ...

  3. Applications of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Applications_of_artificial...

    Moreover, if whole brain emulation is possible via both scanning and replicating the, at least, bio-chemical brain – as premised in the form of digital replication in The Age of Em, possibly using physical neural networks – that may have applications as or more extensive than e.g. valued human activities and may imply that society would ...

  4. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    The softmax function, also known as softargmax [1]: 184 or normalized exponential function, [2]: 198 converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression .

  5. Machine learning control - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_control

    Machine learning control (MLC) is a subfield of machine learning, intelligent control, and control theory which aims to solve optimal control problems with machine learning methods. Key applications are complex nonlinear systems for which linear control theory methods are not applicable.

  6. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    The learning problem with the least squares loss function and Tikhonov regularization can be solved analytically. Written in matrix form, the optimal w {\displaystyle w} is the one for which the gradient of the loss function with respect to w {\displaystyle w} is 0.

  7. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.

  8. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    Many optimization problems can be equivalently formulated in this standard form. For example, the problem of maximizing a concave function can be re-formulated equivalently as the problem of minimizing the convex function . The problem of maximizing a concave function over a convex set is commonly called a convex optimization problem.

  9. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.