Search results
Results From The WOW.Com Content Network
A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.
This plot corresponds to solutions of the complete Langevin equation for a lightly damped harmonic oscillator, obtained using the Euler–Maruyama method. The left panel shows the time evolution of the phase portrait at different temperatures. The right panel captures the corresponding equilibrium probability distributions.
A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being ...
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
The damping ratio is a parameter, usually denoted by ζ (Greek letter zeta), [7] that characterizes the frequency response of a second-order ordinary differential equation. It is particularly important in the study of control theory. It is also important in the harmonic oscillator. In general, systems with higher damping ratios (one or greater ...
Though our starting example was the harmonic oscillator, all the math up to this point has been completely general for a particle subject to a conservative force. This formula can be generalized for any one-dimensional physical system by plugging in the corresponding potential energy function.
Relaxation oscillation in the Van der Pol oscillator without external forcing. The nonlinear damping parameter is equal to μ = 5. [12] When μ = 0, i.e. there is no damping function, the equation becomes + = This is a form of the simple harmonic oscillator, and there is always conservation of energy.