When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Absolute space and time - Wikipedia

    en.wikipedia.org/wiki/Absolute_space_and_time

    These notions imply that absolute space and time do not depend upon physical events, but are a backdrop or stage setting within which physical phenomena occur. Thus, every object has an absolute state of motion relative to absolute space, so that an object must be either in a state of absolute rest, or moving at some absolute speed. [5]

  3. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    Unlike a regular distance-time graph, the distance is displayed on the horizontal axis and time on the vertical axis. Additionally, the time and space units of measurement are chosen in such a way that an object moving at the speed of light is depicted as following a 45° angle to the diagram's axes.

  4. Position (geometry) - Wikipedia

    en.wikipedia.org/wiki/Position_(geometry)

    In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point P in space. Its length represents the distance in relation to an arbitrary reference origin O , and its direction represents the angular orientation with respect to given reference axes.

  5. Metric tensor (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor_(general...

    In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study.The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

  6. Orientation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orientation_(geometry)

    Changing orientation of a rigid body is the same as rotating the axes of a reference frame attached to it.. In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies. [1]

  7. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)

  8. Principle of locality - Wikipedia

    en.wikipedia.org/wiki/Principle_of_locality

    The gray area (a circle here) is a mathematical concept called a "screen". Any path from a location through the screen becomes part of the physical model at that location. The gray ring indicates events from all parts of space and time can affect the probability measured by Alice or Bob.

  9. Frame of reference - Wikipedia

    en.wikipedia.org/wiki/Frame_of_reference

    A coordinate system is a mathematical concept, amounting to a choice of language used to describe observations. [3] Consequently, an observer in an observational frame of reference can choose to employ any coordinate system (Cartesian, polar, curvilinear, generalized, ...) to describe observations made from that frame of reference.